Chaotic and Arnold stripes in weakly chaotic Hamiltonian systems
نویسندگان
چکیده
منابع مشابه
Chaotic and Arnold stripes in weakly chaotic Hamiltonian systems.
The dynamics in weakly chaotic Hamiltonian systems strongly depends on initial conditions (ICs) and little can be affirmed about generic behaviors. Using two distinct Hamiltonian systems, namely one particle in an open rectangular billiard and four particles globally coupled on a discrete lattice, we show that in these models, the transition from integrable motion to weak chaos emerges via chao...
متن کاملGeneralized dynamical entropies in weakly chaotic systems
A large class of technically non-chaotic systems, involving scatterings of light particles by flat surfaces with sharp boundaries, is nonetheless characterized by complex random looking motion in phase space. For these systems one may define a generalized, Tsallis type dynamical entropy that increases linearly with time. It characterizes a maximal gain of information about the system that incre...
متن کاملControlling chaotic transport in Hamiltonian systems
With the aid of an original reformulation of the KAM theory, it is shown that a relevant control of Hamiltonian chaos is possible through suitable small perturbations whose form can be explicitly computed. In particular, it is shown that it is possible to control (reduce) the chaotic diffusion in the phase space of a 1.5 degrees of freedom Hamiltonian which models the diffusion of charged test ...
متن کاملChaotic mixing in noisy Hamiltonian systems
This paper summarises an investigation of the effects of low amplitude noise and periodic driving on phase space transport in three-dimensional Hamiltonian systems, a problem directly applicable to systems like galaxies, where such perturbations reflect internal irregularities and/or a surrounding environment. A new diagnostic tool is exploited to quantify the extent to which, over long times, ...
متن کاملQuantum response of weakly chaotic systems
Chaotic systems, that have a small Lyapunov exponent, do not obey the common random matrix theory predictions within a wide “weak quantum chaos” regime. This leads to a novel prediction for the rate of heating for cold atoms in optical billiards with vibrating walls. The Hamiltonian matrix of the driven system does not look like one from a Gaussian ensemble, but rather it is very sparse. This s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chaos: An Interdisciplinary Journal of Nonlinear Science
سال: 2012
ISSN: 1054-1500,1089-7682
DOI: 10.1063/1.3697985